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ABSTRACT 

The t i t le problem is solved by using charac te r i s t ic  functions. The 

force and moment due to l a t e ra l  translation of a r igid ax isymmetr ic  tank 

a r e  obtained. A mechanical model is a l so  proposed. However, no 

numer ica l  example is given because of the considerable programming 

effort  required.  
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NOTATIONS 

. 
Y 

PU 

p U I  

pk 

radius  of the contact c i rc le  of the liquid with the tank 

contact curve of F and W 

equilibrium (mean) interface elevation 

equilibrium (mean) interface o r  f /a.  

(exact)  interface 

average interface height f rom origin (Fig. 1 )  

effective gravitational accelerat ion 

wetted wal l ,  r / a  - G = 0 on W 

interface perturbation 

a re ference  length, say 11 (Fig. 1 )  o r  QII 

average liquid height f rom the center  of the bottom 

liquid mass, pVa 3 

outer normal  

an  in te rger  

Bond number,  pga2 /CT 

pre  s s u r e  

equilibrium liquid p r e s s u r e  a t  origin (just  below interface) ,  
a constant 

ullage p r e s s u r e  

equilibrium ullage p r e s s u r e  at origin (just  about interface) ,  
a constant 

2 
Pu / P w p  

I 

iv 



NOTATIONS (Cont'd) 

S 

t 

T 
4 

T 

V 

W 

We 

r 

6 i j  

AP 

t: 

K 

P 

PU 

magnitude of velocity 

velocity vector  

cylindrical  coordinates 

surface a r e a  nondimensionalized by a 2 

t ime 

contact curve of Fe and We 

surface tension force 

velocity components along x, y, z 

volume of the liquid divided by a 3 

wetted wall bounded by F, r / a  - W(R, e )  = 0 on W 

exact wetted wall bounded b y  Fe 

amplitude of tank displacement along x, y, z 

x/a,  z / a ,  respectively 

hy s te r e  s is c oe fficient, Equation (2 8)  

Kronecker  delta 

density difference between lower and upper fluid, p - p 

interface elevation, f t h 

angle between normal to F and z-axis  

the mean curvature ,  Equation (6)  

U 

principal curvature  s 

lower fluid density 

density of ullage fluid (vapor  o r  gas)  

V 
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NOTATIONS (C ont 'd )  
I . 

U 

ri 

w 

surface tens ion 

frequency of oscillation 

kth natural  frequency 

p a  3 2  w /u, product of Bond number and frequency pa rame te r  

SUPERSCRIPTS AND SUBSCRIPTS 

( ) at the ver tex of the equilibrium interface (origin) ( )I 

( 111 ( -) at the equilibrium contact point 

(3 the amplitude of ( ) 

) is a vector 

) is a unit vector 

) on C 

) re lated to center of gravity 

) on E 

) associated with cos(m8)  circumferent ia l  mode 

) on T 

) on W 

1 on we 

vi 



l b  
INTRODUCTION 

I .  

. 

The behavior and consequences of fuel sloshing in rockets  under 

a high effective gravity a r e  recognized problems which have been quite 

well  understood (Refs.  1 ,  2 ,  3 ) .  The problem of low gravity fuel sloshing, 

charac te r ized  by the significant role of interfacial  tension, i s  now a sub- 

ject  of importance for application to coasting rockets  o r  orbi ta l  stations.  

The equilibrium behavior of fluids a t  zero  and/or  low gravity h a s  

been studied in References 4 through 7 .  

of a n  equilibrium interface shape is nonlinear and requi res  a t r i a l  and 

e r r o r  procedure (Refs .  5, 6) .  Satterlee and Reynolds (Ref. 8) have 

successfully solved the f r ee  sloshing problem in cylindrical  containers  

under low gravity and formulated a var ia t ional  principle for  this  purpose.  

More recently,  Dodge and Garza  (Ref. 9 )  per formed experiments  under 

s imulated low gravity conditions and predicted the sloshing forces  for  a 

c i r cu la r  cyl indrical  tank under la te ra l  excitation. 

model  was  a l so  given. 

The theoret ical  determination 

An equivalent mechanical  

F o r  a n  "arb i t ra ry"  tank under normal  gravity,  the fuel sloshing 

The object problem has  been investigated in References 10 through 1 3 .  

of the present  repor t  is  to predict forces  exer ted  on an a r b i t r a r y  axial  

symmet r i c  tank (r igid)  subject to l a t e ra l  excitation in a low gravi ty  condition. 
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FORMULATION O F  PROBLEM 

. 

Governing Equations 

Assume the tank is undergoing t ranslat ional  oscil lations.  The 

momentum equations in a tank fixed coordinate system a r e  

a U  au aU aU 
at ax ay a Z  P ax 
-tu- t v- t w- = - L * t z0w2 cos(Nwt) 

av av av 
at ax a Y  az  P a Y  
- t U* t v- t w- = - t Tow2 cos(Nwt) 

- 8  - aw + u- aw t v-+w-  aw aw = - - - t ̂ zow 2 cos(Nwt) 
at ax a Y  aZ  P 

Assume  irrotat ional  flow in the moving coordinates.  

velocity potential such that 

The re  ex is t s  a 

04 = q 

The continuity and irrotationali ty equation yields 

v2+ = 0 

inside the liquid. 

Integration of the momentum equation yields the unsteady 

Bernoulli equation: 
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c 

. 

- t - q  a+ 1 2 P - P I  

at 2 P 
+- - G o a  2 x cos(Nwt) - F0w 2 y C O S  (Not) 

- z o w  2 z cos(Nwt) + gz = 0 (4) 

At the interface,  the pressure-difference curvature  relation is (Lamb,  

pp. 456 and 265) 

where  the curvature  i s  negative if the center  of the curvature  is a t  the 

upper s ide.  In cylindrical  coordinates (Ref.  8, p. 25) ,  

The resul tant  interface dynamic condition f rom Equations (4), (5) ,  and (6) 

is then 



? 

4 

Neglect flow in the upper fluid (vapor o r  gas)  

c 

Under equilibrium conditions, assuming the interface is ax isymmetr ic ,  

- (PU1 - PI) - ( W g f  t 0- 

Since the origin is a t  point I ( F i g .  1) where f = 0 ,  then 

= U(K1 + K Z ) ~  = U K I  (9b) 

a i  
i a  a r  r- 

- (PUI - PI) = - u{; ar [11(%)2]1/2 

The interface kinematic condition (Ref. 12, pp. 7 and 9) is 

2 2 112 K = g l  al; +(%) +(&I on Fe 

On the wetted wall ,  

on W 

The solution is governed by Equation ( 3 )  subject to boundary conditions, 

Equations (7), ( l o ) ,  (1 1). In addition, t he re  is a contact angle condition, 

the l inear ized fo rm of which will be given l a t e r  [ Eq. ( 2 4 ) l .  



Linearizat ion 

. 
In the formulation of problems, only the free surface conditions 

a r e  nonlinear.  F o r  smal l  oscillations, the problem can be l inear ized.  

Subtracting Equation (8) f rom Equation ( 7 ) ,  the l inear ized interfacial  

dynamic equation can be easi ly  shown to be 

ah - ah r- a r  80 i a  i a  ae 
t-- 

.2 ae [1 +(32]1/2 [l t ( g)2]3/2 
- P,, - (Ap)gh + .(; 

(12)  + pS0w 2 x cos (Nut) + p y 0 w  2 y cos  (Nut) + p z 0 w  2 z cos  (Nut) = 0 

where  the definitions of h ,  f ,  and other quantit ies a r e  shown in Figure 1. 

In this  repor t ,  the investigation w i l l  be l imited to l a t e ra l  excitations in 

which 7 ,  = Z0 = 0 and N = 1. Let 

0 = 6 s in  (ut)  , h = cos (ut)  

Equation ( 12) yields 

ai; r- a r  1 - 
r 2  

a 
ae - 

The l inear ized fo rm of Equation (10) is: 
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I 

Let  

Equations (14) and (1  5) yield 

The p res su re  under equilibrium conditions is 

On the wall ,  the t ime independent p re s su re  is 

Po = PI - Pgz on W as  well  a s  on We (17b) 

The perturbation p r e s s u r e  on the wal l  f r o m  Equation (4) af te r  subtracting 

Equation (17b) is 

(18) 
- au  p '  = p - Po = - p-  t 2 w2x cos  ( a t )  on W at 0 

Now, the contact angle correlat ion wil l  be discussed.  The contact 

angle,  O C ,  is the angle between the wal l  and the tangent to the exact  f r e e  

sur face ,  Fe, i . e .  (Fig.  1): 
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Z 

i / e  F [ f r ee  sur face)  

X 

1191 

Figu re 1. Some Nomenclature 
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The perturbation equation s ta tes  

.I 

The directional cosine of the normal to the exact interface with respect  

to the ver t ica l  ax is  i s  

Since 

then 

sin OF = -J&f 
The plus sign is taken for  convex interfaces  viewed from the fluid. 

The perturbation contact angle is then 
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.. 

Presumab ly ,  the perturbation contact angle would inc rease  with the 

no rma l  velocity of the interface,  and i t  may depend on the location of 

the contact point. Thus,  one may a s sume  the hys t e re s i s  condition 

Making use  of Equation (16),  Equations ( 2 2 )  and ( 2 3 )  yield 

Nondimensionalization 

Let  

and the Bond number 

2 - 
*B - U 

2 The interfacial  dynamic equation a ]becomes:  
IJ &a 



The interfacial  kinematic condition equation s ta tes  that 

The contact angle hys te res i s  condition reduces to 

sin O F  t .;I H 

The wetted wal l  c-ondition i s  

and the governing par t ia l  differential equation i s  

V2@ = 0 

* F r o m  h e r e  on, V r ep resen t s  gradient nondimensionalized by a .  

(30)':: 



11 

CHARACTERISTIC FUNCTION METHOD 

Prope r t i e s  of Charac te r i s t ic  Functions 

The program for  an a r b i t r a r y  ax isymmetr ic  tank will be  solved 

by the charac te r i s t ic  function method. 

sa t i s f ies  the Laplace equation 

The charac te r i s t ic  function 

v2* = 0 

subject  to the condition that 

- =  a* 0 on W 
an* 

and 

on F ( 3 3 )  

F o r  a general  tank, the charac te r i s t ic  functions may not and need 

not  be the no rma l  modes.  

( 3 2 )  and (33 ) ,  it can be easi ly  shown that the following orthogonal condition 

F r o m  the divergence theorem and Equations ( 3 1 ) ,  

holds: 
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Let 

i K. = - -  on F 
3 an 

One h a s  an alternative fo rm 

\k.K. dS = 6ij I QjKj dS 
F 

I 
F l 3  

which was given in Reference 8. 

If the velocity potential is expanded in t e r m s  of charac te r i s t ic  

functions, one h a s  

@ =I cj'kj 

F r o m  Equations (35)  and ( 2 7 ) ,  

(35)  

( 3 7 )  

which i s  again a famil iar  equation given in Reference 8. 

I t  is  important to note that the charac te r i s t ic  functions and their  

der ivat ives  can be calculated b y  finite difference method (Method 11, 

Ref. 15) to evaluate integrals  and constants enter ing the fo rce  and 

moment  formulas  given la te r .  :I: 

:::Upon completion of the present  repor t ,  the following paper by Gordon 
C.  K. Yeh was published in which the Ritz Method was proposed to  ca l -  
culate the charac te r i s t ic  functions: "F ree  and Forced  Oscillations of a 
liquid in an axisymmetr ic  tank at low gravi ty  environments,  "J. Appl. 
Mech.,  Mar .  1967. This paper does not give an express ion  for the force  
response nor  any mechanical model. 
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F r e e  Oscillations of an Arbi t ra ry  Axisymmetric Tank 

To include the breathing vibration in an elast ic  tank a t  the s a m e  

t ime,  it i s  assumed that 

Q o c  cos (me) , H oc C O S  (me) ( 3 9 )  

The interface dynamic condition, Equation (26) ,  for  Xo = 0 reduces to 

Application of the s e r i e s  expansions. given b y  Equations (37) and (38) and 

the Galerkin method yield the following ma t r ix  equation: 

where  the ma t r ix  e lements  a r e  given in Tables  1 and 2. 

Equation (41) takes the form 

The  eigenvalue problem of Equation (42) can be solved on a high speed 

computer .  The lowest few eigenvalues yield the lowest few na tura l  

a K m  
:*It i s  a s sumed  that 

condition, Equation (28) .  

= TKm corresponding to the constant angle 
j 

an:: 
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TABLE 1. TABLE OF CONSTANTS 

dk: s e e  Equation (56) 

e::* s e e  Equation (58) k' 

1 
v = FII -J  2FR dR 

0 1 

a F  
l7 (aR),, 

+ 
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T A B L E  2.  T A B L E  O F  INTEGRALS 

pj = QmjIX t W if 2 - W(R) = 0 o r  W 
a a 

mj  W 

r 
.+ G ac]. , ,dB az a 

if - - G(Z) = 0 o r  W 
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frequc ncies,  and the corresponding eigenvectors yield the corresponding 

no rma l  modes. 

F o r c e d  La te ra l  Oscillations (Rigid Tank) 

F i r s t ,  solutions will be obtained by d i rec t  expansions in cha rac t e r -  

i s t ic  functions. Le t  

a = L d j ~ m i  cos (me) ( 4 3 )  

F o r  l a t e ra l  oscil lations of a rigid ax isymmetr ic  tank, m = 1 .  Analogous 

to Equation (41), Equation (26) and Galerkin’s  method yield 

{-[A] t fi2[~])Eaj] = xo&fi2 [tgj] 
where  

(45) 

- t rn2  E i- NB Pmij (46) - - r v m i j  i- ymij mij 

The coefficients “ d ’ s  can be  obtained by ma t r ix  inversion; however, to 

avoid a l imiting p rocess  at z e r o  gravity,  the following nondimensional 

velocity potential and sur face  displacement a r e  introduced: 

J 



h* = = 4 - H  =E  e . K  C O S  (me) 
a J "j 

j 

where,  f r o m  Equation (45), 

[E j ]  = f i  [a,] = xon2 -{- [A] t fi2[I]}- 1 [g,] 
2 m a  

17 

(48) 

(49) 

Since in the neighborhood of a natural  frequency the determinant  

I [A] - a2[I]I approaches zero ,  the corresponding mat r ix  in Equation (49) 

may  be ill-conditioned. Therefore ,  a s  an al ternate ,  the solution will be 

obtained by expansion into normal modes.  In the neighborhood of f i r s t  

natural  frequency, one sloshing normal  mode may be sufficient. Near  

higher modes,  one resonant  mode plus the fundamental mode may be 

sufficient as is the c a s e  for  sloshing under normal  gravity. 

Le t  the kth normal  mode be 

where  c a r e  determined in f ree  oscil lations.  Then, expansion in no rma l  

modes yields 

kj 



where 

By definition of normal  modes,  Equation (26) yields 

xdk[-S2i+k t S2 2 ] = XoR k 
k 

By Galerkin 's  method, 

The corresponding velocity potential i s  

where  

The corresponding sur face  elevation i s  

(55) 
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while 

F o r c e  on the Tank 

The divergence theorem w i l l  be used repeatedly to convert  the 

sur face  integral  on the (mean) wetted surface,  W,  to a volume integral  

minus the sur face  integral  on the (mean) f r e e  surface,  F. 

to p r e s s u r e  on W e  - W will be evaluated las t .  

The fo rce  due 

The force  due to hydrostatic p r e s s u r e  is 

ax cos (n ,x)  = - = -I pgz cos (n ,x )  a2 dS ; a= F, 
l w  

aF 
aR 
- c o s  e 

F 
4-- a2R dRd6 = 0 

The  fo rce  due to iner t ia  is: 
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gX2 =/ pC0 w 2 x cos (n, x) a2 dS 

w- 

-- aF  cos 8 
a 3  dS aR = pxo A w a3/  v (XVX)dV -! X 

V F ,,/I- 

= pXoa 4 2  w V t pXow 2 4  a rrvl  

Due to impulsive p re s su re ,  s imilar ly ,  

Fx3 z.6, - p a 4  cos (n, x) a 2  dS 

= - p a  2 2  C e' a 2 6 ,  Q k c o s  (n, x) dS ( - n 2 X o )  
k f i E - f i 2  

where  

In deriving Equation (61), use is made of 

/ a.Jljdv =/, v *(XVqi.)  dV =I X a+ = -k.g.a2 1 ax J an 2 J J m j  F V 

Using Equations (4) and (9b), the l inear ized  force  on the wetted sur face  

W e  - W i s :  
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Fx =/ p cos (n, x)a2 dS COS (at) TT [p t wI 
a w e - w  uI 

- pgFIIa]a2 C B . K  
J mjII 

j 

Next, the d i rec t  force due to surface tension 

Le t  the surface tension be pulling downward. The d 

of the sur face  tension a t  the wall with r e spec t  to cy1 

a r e  (Appendix A) 

1 P :[ Jlt(K) t 2 - -  aF ah" 

- 1  

a R a R  c 

will be evaluated. 

r e  c t ional co s in e s 

ndrical  coordinates 
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- 
m =  

r 
a R a R  

aR ’ aR 

1 t (E) t 2-- 8F ah* 

IC 
- A -  8F ah” 1 

Then, using binomial expansion and integration, 

A 

F T - (T cos e - 3 sin e) - r de 
rde XT T 

J 0 1 [I ( q ] 3 1 2  aR 

RdB (68a) t sin 8 
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The moment about y-axis can be obtained s imi la r ly  by integration 

- - A  My =I, [pz cos (n ,x)  - px cos  (n, z ) ]  a2dS  -J T X r * y ds  
C e 

Due to l imitation of space,  details of the evaluation will be omitted. It is 

noted, however, that not a l l  integrals can be converted to integrals  on the 

(mean)  f r e e  sur face ;  consequently, values of the charac te r i s t ic  functions 

on the (mean)  wetted wall need be calculated in the finite difference 

pro gram.  

To summar ize ,  the total force and moment a r e  

A 

Fx = pXow 2 4  a V t T T V ~ ~ X ~ W  2 2  a t pw 2 4  a Xo 

r 1 
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2 5  t V L ]  f po2a5xO 1 ‘k 
k h<y = px0u a [VZ c .  g. 

( $ ) - l  

+ FII[FII 

The contained constants a r e  given in Table 1. 
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MECHANICAL MODEL 

The mechanical model without damping consis ts  of a s e r i e s  of 

sp r ing -masses  located a t  different heights.  

kth spr ing constant be mkcdk, and the height of kth mass - sp r ing  be Zk. 

The force  and moment due t o  the equivalent sys tem a r e  (Ref.  16):  

Let the kth m a s s  be mk, the 

2 

(5)- 1 

.} ( 7 2 )  

F o r  convenience, mk can be obtained f rom seve ra l  "masses"  a t  different 

heights, i. e . ,  

mk = mkn 
n 

mkZk = C m k n Z n  
n 
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It is found from comparing Equations (68) and (69) with Equations (71), 

(72), and (73) that 

where  

mkl  mk2 mk3 mk4 FIIbkNB t -  t -  t - -  - tk - mk - - -  
MF MF MF MF MF 

k = 1, 2, . . : (74) 

T h e  rigid mass mo is given by 
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It is probable that 

r v l  = FII 1 bkg - ~4 - bk 
k a k a  k 

(which cannot be proved in general)  so that 

00 c mk m o  = M F  - 
I;= 1 

which implies  that the total liquid mass equals the total m a s s  of the 

model .  The location of the rigid m a s s  is 

It is probable  but cannot be proven in  genera l  that: 

c 
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then 

] < bkPk 
bk 1 

t U 5 z  - +- a [FII t aw 
k ho 

m ~ z ~  = MFZc.  g. - f mkZk 
k =  1 

(82);' 

av.  - Fav. To refer all heights to the center of the bottom, let Zk- zk t I 

* If Equations ( 7 9 )  and (82)  do not hold, then the mechanical model cannot 
duplicate the statical properties of the liquid. 
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CONCLUSIONS 

The force and moment exer ted on the tank have been obtained by 

using charac te r i s t ic  functions, and a possible mechanical model is 

introduced in the present  report .  The evaluation of eigenvalue and 

eigenfunctions, however, requi res  a finite difference computer p rogram 

which has  not yet been writ ten.  

of the present  theory a r e  to  be made with experiments .  

Such a program is needed i f  compar isons  
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APPENDIX A 

Directional Cosines of the Surface Tension 

Let  -4, m, and n be the directional cosines  of the surface tension 

a t  the wall (on contour T )  with respec t  to the cylindrical  coordinates 

r, 8, Z .  

Let  the f ree  surface geometric equation be 

z - <(r,  6 )  = 0 on F, 

The direct ional  cosines  of the normal  to  the f ree  surface are  

First, the sur face  tension l ies  in  the plane of the f ree  sur face  a t  T ;  thus, 

Next, we shal l  find the tangent vector ?of the contact curve  T which is 

de fined by 

r = RII t 6 ( 8 )  , 8 3 8 , z = <(r ,  e) 

The e lement  of the tangent line is 

f A 

4 -  4 -r. 

ds  = r d r  t 8 r d e t  z d z  
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then 

Second, the sur face  tension is normal  to the contact curve tangent 5; thus, 

Therefore ,  neglecting the second o r d e r  t e r m s  when comparing with 

unity, one finds 

n (- I 

T h i r d  and last, the relat ion of directional cosines  s t a t e s  that  

m2 t n2 t I' = I 

Again neglecting the second o rde r  t e r m s  when comparing with unity, one 

finds : 
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